KOH-Etching of the Curved Electrode of an In-plane Moving Edge Actuator

J. Frühauf, F. Bennini, E. Gärtner

Fig. 1: Concept of the moving edge actuator

Fig. 1 shows the concept of the electrostatic moving edge actuator. The in-plane curved electrode is made by anisotropic KOH etch technique. This etchant generates vertical sidewalls along the <100>-mask edges so that a thin beam (width: wafer thickness) for the in-plane bending can be produced. In addition nearly vertical sidewalls are also generated along mask edges deviating about $\pm 4^{\circ}$ from the <100>-orientation. An indication that vertical sidewalls occur is the equality of etch rates for their upper and lower edges (fig. 2). Therefore a vertical structure can be etched having a curved contour.
The mask of the curved electrode is realized by using a modified triangular structure. The hypotenuse is replaced by segments of a polygon. The design problem consists in finding the mask polygon from which the resulting course of vertical sidewalls fits equation (1).

$$
\begin{gather*}
y=d_{\max }\left(\frac{x}{L}\right)^{n} \quad\left(\mathrm{~d}_{\max }:\right. \text { maximum possible deflection, } \\
\text { L: length of curved electrode }) \tag{1}
\end{gather*}
$$

Fig. 2: Etch rates as functions of the angle α between the direction of the mask edge and the flat of a $\{100\}$-wafer. a: sidewalls with inclination of about 55°; b: sidewalls consisting of two facettes; c: nearly vertical sidewalls

At first the curve of equation (1) is approximated by a polygon with an angle increment of $\Delta \alpha=0,1^{\circ}$.
The mask is constructed by the displacement of the segments of the polygon by the distances of underetching corresponding to their direction $=45^{\circ}-\Delta \alpha$ and to the etching time. The underetch rates of $\mathrm{KOH} 30 \% 80^{\circ} \mathrm{C}$ are known for all directions of mask edges in steps of $\Delta \alpha=3^{\circ}$ (file of etchant of simulator SIMODE). By a parabolic interpolation between 41° and 49° we can use $v(45 \pm \Delta \alpha)=\left(0,00555 \Delta \alpha^{2}+1,0775\right) \mu \mathrm{m} / \mathrm{min}$ to calculate the rates in steps of $\Delta \alpha=0,1^{\circ}$ (equation (2) fits the rates of fig. 2 in region c).

Fig. 3: Measured contours of curved electrodes
An example of the measured contours of the realized curved counter electrode is shown in fig. 3. The best fits were found with the exponents $\mathrm{n}=2,25$ and $\mathrm{n}=3,48$ which exceed a little the target values of $\mathrm{n}=2$ and $\mathrm{n}=3$, respectively. This indicates the realizibility of sidewalls with a defined curved course. The deviations arise from the inaccuracy of the etch rates.

