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Nowadays inertial sensors for car dynamics stabilization, acceleration detection, human body
motion monitoring are popular MEMS applications. Additionally motion/position detection is often
required for actuators too (xy stages, switches, etc.). At present these systems are usually based on
piezoelectric or capacitive sensors. While especially the latter principle is already used for mass
production of inertial sensors an increase of the signal/area consumption ratio is desired. That’s why
alternative approaches have been presented looking for a direct integration of mechanical and
electronical principles [1,2].
A novel vertical field effect transistor for signal conversion from the mechanical to the electrical
domain is manufactured. The channel resistance between drain and source is influenced by a movable
gate working as a sensing unit.
The system consists of a laterally moving spring-mass-system (Fig. 1, Fig. 2). There are two arms at
the seismic mass. Transistor regions are located at the end of the arms. The moving mass (silicon) is
acting as a gate electrode. The air-gap between the channel and the gate electrode decreases/increases
due to the deflection of the mass caused for example by the moment of inertia. A displacement of the
mass changes the air gap of the vertical FET influencing the capacitance of the gate insulator. The
capacitance of the gate insulator can be expressed as a series connection of the air-gap capacitor with
the oxide capacitor. In addition to the vertical FET signal the movement is also detected capacitively
by comb electrodes at both sides of the seismic mass for comparison. Further comb electrodes are used
to control the working range. Thus a variable electrostatic force decreases/increases the gap between
the channel and the mass (gate).

To find out the relationship between the geometric dimension and the sensitivity of the structure, the
performance of the sensing element is simulated using a process and device simulator. An analytical
model is used to evaluate the dimensionally optimised arrangement between the transistor and the
spring-mass-system in order to design a vertical FET with maximum sensitivity. The simulator data
are compared with measurement results from fabricated sensors.

A high aspect ratio technology (Fig. 3) represents the base technology for the fabrication of the
sensor structures. Using a five mask process, laterally movable structures with n-type and p-type
doped layers are fabricated. The process flow will be presented later more in detail.

The output current of a fabricated vertical FET (non optimised) increased approximately from 0 nA
to 30 nA by 8 µm gate deflection at a bias of Vds= 1 V and Vgs= 5 V with a senor area of 90 µm x
10 µm. Exemplary the Fig. 4 and Fig. 5 illustrate the I-U-characteristics of the vertical FET.
A new issue of the vertical FET is the symbiosis of an active transistor device and a micromechanical
structure forming a micro electro mechanical system (MEMS). Main advantage of the vertical FET is
the higher signal-to-noise ratio with respect to capacitive sensor systems and therefore simplification
of the signal conditioning circuitry. The measured results show that the signal per sensor area is about
fifty times higher compared to capacitive sensors.
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Fig. 1: SEM view of the vertical FET Fig. 2: Light-optical microscope view of the transistor

Fig. 4: I-U-characteristic depending on deflection voltage

Fig. 3: Technology process flow Fig. 5: Transfer characteristic at Vds= 1 V
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