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Design of Complex Sensor-Actuator-Systems (EKOSAS) 
 
W. Dötzel, J. Mehner, F. Bennini  
 
The goal of the project EKOSAS is to develop methods and tools for modeling and simulation of Micro-Electro-
Mechanical-Systems (MEMS). Essential points are the coupling of different physical domains to the electronic 
circuitry in static and dynamic case. The design environment covers T-CAD for process simulations, FEM\BEM 
for coupled fields on the component level and VHDL-AMS for system level simulations. Finally, these methods 
shall be tested and optimised on a set of complex sensor-actuator-systems. In particular, the goals are: 
 

- Development of tools for computer aided generation of reduced order macromodels for MEMS 
- Development of interfaces for data exchange between etching simulation tool (SIMODE) and FEM 

(ANSYS) \BEM (CAPA) simulation tools. 
- Integration of all submodels in one model for system simulations  
- Benchmark tests (micromirror array, ultrasonic transmitters and receivers, position sensor, inclination 

sensor) 
 
The subprojects of the Chemnitz University of Technology are focused on the automatic generation of 
reduced order macromodels for system simulations: 
 
A common engineering approach to analyze complex systems is to approximate the unknowns by a series of 
weighted linearly independent shape functions: 
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Such an approach is well known as Galerkin method where ui are the time dependent nodal displacements of the 
FE-model and φj the linear shape functions which are scaled by time dependent factors qj. Choosing eigenvectors 
of the linear system as shape functions is very efficient since they describe the real deformation state of the 
structure by a minimal number of functions with high accuracy. Furthermore, eigenvectors can be computed 
automatically by a modal analysis. In general, “Eq. (1)” describes a coordinate transformation of finite element 
displacement coordinates to modal coordinates of the macromodel. The deformation state of the structure given 
by n nodal displacements ui (i=1,2,…,n) is now represented by a linear combination of m modes weighted by 
their amplitudes qj (j=1,2,…,m) where m << n.  
According to [1], one can use the second energy formulation of Lagrange to establish the governing equations of 
motion describing the ROM of an electrostatic actuated MEMS structures in modal coordinates: 
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where mj is the modal mass, ωj the eigenfrequency, ξj the linear modal damping ratio, Wst the modal strain 
energy function, Cks the modal capacity-stroke function, r the number of capacities which are involved for 
microsystems with multiple electrodes, V the applied electrode voltage and Fi a local force acting at the i-th 
node. Furthermore, to export the ROM to a network simulator one must include a voltage-current relationship. 
The current I at each electrode k is defined by: 
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An essential prerequisite to establish “Eq. (2)” and “Eq. (3)” are proper modal strain energy and capacity-stroke 
functions. Both are derived from a series of FE runs at various deflections states in the operating range. The 
acquired data are fitted to polynomial functions in order to compute the local derivatives which describe force 
and stiffness terms [2]. This process is computationally expensive but has to be done just once. The result is a 
black-box model that can be applied to any load situation. However, it has been found that the distinction of 
dominant and relevant mode shapes speeds up this process considerably. Dominant modes are characterized by 
large amplitude. Their interactions to all other mode shapes, dominant and relevant, are regarded throughout. 
Relevant modes contribute to the final solution but do not affect among each other. Consequently the 
multivariable function fit can be reduced to a series of functions with a lower number of variables. It turned out 
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that two dominant modes are sufficient for most applications. The polynomials can then by described by the 
following series representation: 
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This approximation yields to insignificant errors. Remarkable is that not only the number of polynomial 
coefficients can be reduced but also the number of sample points. For example, if the nonlinear strain energy is 
computed for five mode shapes and six modal amplitudes of each mode, the number of data points would be 
65=7776 compared to 3×63=648 when two modes are classified as dominant and the three others as relevant. 
Furthermore, the fit is limited to functions with three variables, which allows one to use simple and fast 
algorithms like the well known least square fit. Depending on the FE model size and the number of mode shapes, 
which are includes in the ROM procedure, the data acquisition is typically an over-night job. 
“Eq. (2)” and “Eq. (3)” describe reduced order models in modal coordinates, which affect the whole structural 
deformation. Under some circumstances where the structure undergoes temporary constraints in local 
coordinates (e.g.: contact problems), an interface is needed, which couples nodal displacements and modal 
amplitudes at specific points of the structure. A bi-directional coupling between both coordinates is done by 
means of Lagrangian multipliers λi, which represent internal forces due to deformation states whether in local or 
modal coordinate as follows: 
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This equation describes a ROM with three modal DOFs and two electrodes, which is coupled with two nodes 
from the corresponding FE-model. Fig. 1 shows an example of a contact problem of an electrostatically actuated 
one side clamped beam with contact pad, treated with reduced order modeling techniques. The upper plot shows 
the bending line of the beam where the contact is placed at the right end. In the lower part, the contact pad is 
situated at the center of the beam. It could be shown that only six linear mode shapes are able to map the 
deformation state of the structure before and after contact with an error of less than 1% in comparison with the 
full finite element analysis.  
 

 
Fig. 1: Voltage vs. displacement functions of a one side clamped beam with contact pad  
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Fig. 2: System level simulation in PSPICE using a ROM of a micromirror 
 
The ultimate goal of ROM is to obtain an accurate black-box model of the microsystem’s behavior. Interface 
signals are limited to the voltage-current relationship at each electrode, essential inputs such as external loads 
(e.g. gravitation, pressure) and significant output quantities (e.g. a subset of displacements at characteristic points 
of the model). The black-box model can be exported and used for modeling systems as signal flow graphs (e.g. 
SIMULINK) or as networks (e.g. PSPICE). VHDL-AMS becomes more and more important in analyzing and 
simulating MEMS on the system level. It is much more flexible, because in addition to the across and through 
quantities (Network syntax) one can use further relations expressed by analytical terms inside the total system. 
Fig. 2 illustrates an example of a system simulation performed in PSPICE. It demonstrates a frequently used 
electronic circuitry to detect the position of electrostatic actuated microstructures. In this example, the ROM of a 
micromirror presented in [1] is used, where the current alteration on the ground electrodes is evaluated to obtain 
a proportional signal to the mirror plate position. Since the deflection state of the structure is decomposed in 
shape functions (Mode 1 the rotation, Mode 2 the translation; Mode7 and 9 the warp of the mirror plate), one can 
analyze the sensitivity of the circuit with respect to the mirror plate deformation and evaluate the errors.  
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