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1. Introduction 
 Since the dimensions of Metal- Oxide- 
Semiconductor (MOS) transistors are shrunken, 
quantum mechanical effects play a growing role 
in device operations and performance. The 
thickness of the gate insulator layers reaches up 
to 2 nm in modern state of the art devices. The 
size scaling of oxide layer leads to a dramatically 
rise of the gate leakage current, which produces a 
large amount of heat in the devices. Therefore, 
deeper theoretical investigation of the leakage 
current, to suggest preventive measures how to 
reduce it, become very important. 

Suggestion of quantum corrections to the 
classical characteristics in the framework of 
classical models is one of the widely used 
method. The effective potential (EP) approach 
[1-3] and the density gradient (DG) [4-5] 
approach which are based on the Bohmian 
interpretation of quantum mechanic are the most 
important models in this category. Although the 
quantum corrections improve the classical data, 
these approaches are not able to model and to 
predict all quantum mechanical effects. Modern 
studies of the leakage current in ultrathin oxides 
are focused on pure quantum mechanical 
modelling of field- effect devices. 
 In a fully quantum mechanical continous 
material model the Schrödinger and Poisson 
equations are solved self consistently. The 
Schrödinger equation is solved within the 
effective mass approximation. The boundary 
condition of the Schrödinger and Poisson 
equations are also an important issue. In many 
activities the Schrödinger equation has been 
solved in a quantum box with closed boundaries, 
containing only the semiconductor substrate [6-
8], or the semiconductor substrate and the gate 
insulator [9-12], or even the whole device [13]. 
 In this work we present results of our 
self-consistent computation of quantum- particle 
distribution in a MOS with closed boundaries in 
the inversion regime. Using closed boundary 
condition one obtains quantum mechanical 
bound-states in the inversion layer. 

By improving this model, we have 
solved the Schrödinger equation with one open 
boundary condition to understand the effect of 
open boundarys and the mechanism of crossover 
from bound states into a quasi bound states. 

 
2. Self-consistent solution with 
closed boundary condition 
 In the effective mass approximation, the 
one- electron wave function is given by the 
product of Bloch functions in x, y directions 
parallel to the 2Si SiO−  interface with an 
envelope function in z-direction perpendicular to 
the interface, which is the solution of the 
following one dimensional Schrödinger equation: 
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where ( )j zΨ  and jE  are the envelope function 
and the energy eigenvalue of the jth  sub-band; 

*
jm  is the effective mass in z-direction and 
( )V z is the potential energy. The above equation 

is solved in a closed quantum box under the 
following boundary conditions: 
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Using the Fermi- Dirac statistic and summing up 
over all x, y direction quantum states, the 
electron distribution can be expressed by the 
following equation: 
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where FE is the Fermi energy, vjn is the valley 

degeneracy and *
djm is the density of states 

effective mass per valley. The potential ( )V z  is 
obtained as a solution of the Poisson equation 
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under the following boundary conditions: 
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To find the eigenfunctions and eigenenergies of a 
particle, the Schrödinger equation (1) has to be 
solved self-consistently with Eq.(4).  
 

 
Fig.1. The probability amplitude for the first two sub-bands 
at the  inversion layer of a p-type semiconductor. 
 

 
Fig. 2. Charge distribution and the contribution of two first 
sub-bands to the electron density at the inversion layer. 
 
Figs. 1 and 2 show the bound-states, wave 
functions and charge distribution of the first two 
sub-bands at the inversion layer for a p-type 
semiconductor. 
 As it is shown in Fig. 2 the main 
contribution of the electron density comes from 
the first sub-band and the contribution of the 
higher sub-bands are nearly zero. Fig. 3 shows 
the total electron distribution at inversion layer. 
The average distance of the charge distribution is 
shifted about 2 nm from the interface. The 
quantum charge- distribution  
strongly differs from the classical distribution, 
where the maximum of charge distribution is 
placed at the 2/Si SiO  interface. 

 

 
 
Fig. 3. Total electron distribution at the  inversion layer for 
a p-type semiconductor. 
 
3. Open boundary and the quasi 
bound-states 
 Bound character of electronic states near 
the 2/Si SiO  interface, formed due to the band 
bending, means that there is no leakage from 
such states and, therefore there is no tunnelling 
current from inversion layer into the gate. This is 
an acceptable assumption, if the oxide layer is 
thick enough ( 4oxt nm> ). Unfortunately this 
assumption is not reasonable for MOSFETs with 
ultra-thin oxide layers. 
 Simulation of devices with extremely 
thin oxide layers require to solve the Schrödinger 
equation using open boundary condition. As 
soon as the boundary is opened the bound-states 
change into quasi bound-states. An electron can 
never leave a bound state. In other words, the life 
time of electron in a bound-state is infinite. But 
electrons in quasi bound-states can leave the 
state by tunnelling through the barrier; therefore 
they have a finite life time. In order to 
characterize quasi bound-states we need to define 
the eigenenergy and the wave function of a 
quasi- bound state, like for a bound-state, but 
also the life time for this state. 
 Big effort has been done to indirectly 
calculate the life time of a quasi bound-state in 
inversion and accumulation layer of MOS 
structure, using the transfer Hamiltonian 
approach [10], transverse resonant method [11] 
and Breit-Wigner theory of nuclear decay [12]. 
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Fig. 4. The first quasi bound state in a potential well with a 
3 eV high and 1 nm thick barrier. 103 10 ( )E eV−∆ = × . Red 
and green colour curves correspond to the wave function 
and the probability amplitude, respectively.  
 

We calculate the life time directly from 
the solution of Schrödinger equation with open 
boundary. We integrate the Schrödinger 
equation, providing a zero boundary condition in 
the deep bulk of the Si substrate, and letting the 
other boundary to be open. Instead of the closed 
boundary at the oxide side we force the wave 
function to satisfy the following conditions:  

(i)Absolute value of the wave function at 
the 2Si SiO−  interface has to be larger than that 
in the interface of 2SiO /polysilicon gate; 

(ii) the wave function can not change 
sign in the oxide layer, and the derivative of the 
probability amplitude can not be positive in the 
oxide. 

 
Fig. 5. a closer shot of the figure 4 at the oxide-gate 
interface. The dotted wave functions fail to satisfy the 
conditions of an acceptable wave function. 
 
 Under these conditions we find, that the 
possible energy states are placed in a close 
vicinity E∆  of the bound state, obtained under 
closed boundaries. This E∆  depends on the 
barrier height and thickness. Figs. 4 and 5 show 

 the first eigenvalue with 103 10E eV−∆ = × . 
Changing the barrier height from 3 eV to 2 eV , 

E∆  changes from 103 10 eV−×  to 81 10 eV−× . 
Shift in the thickness of the barrier from 1 nm  to 
0.7 nm , changes E∆  from 81 10 eV−×  
to 71 10 eV−× . 
The life time of an electron in the quasi- bound 
state can be calculated by using the Heisenberg 
uncertainty relation 2t E∆ × ∆ = h . E∆  
increases with decreasing the barrier height or 
thickness, which consequently decreases t∆  
leading to high leakage current. 
 
4. Conclusion 
 As the oxide layers in MOS transistors 
becomes ultrathin the bound-state approximation 
is not a reasonable approximation. The states 
should be characterized as quasi bound-states by 
solving the Schrödinger equation with open 
boundaries. 
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