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Abstract 
A novel quasi- classical expression is derived, that expresses the gate oxide thickness by the electric field 
strengths corresponding to two subsequent extrema in the leakage current oscillations. By analyzing various 
experimental gate current data, the new formula is successfully applied to determine the oxide thickness. 

 
1. Introduction 

 Oscillations of the electron transmission 
through the triangular barrier has been firstly 
studied theoretically by Gundlach [1] in Metal- 
Insulator- Metal (MIM) structures. Although the 
leakage current oscillations have not been 
observed in MIM capacitors, experimental 
evidence toward the oscillations at high gate 
voltage has been revealed firstly by Maserjian et 
al. [2, 3] in Metal- Oxide- Semiconductor (MOS) 
structures with thin gate oxide.  

To explain the electric field ( F ) 
dependence of the measured tunneling current, 
the Fowler- Nordheim (FN) quasi- classical 
expression 0 ( )J F  for the tunnelling current is 
usually combined with the oscillatory amplitude 
B  of Gundlach’s quantum- mechanical 
expression for the transmission coefficient, 
which is responsible for the oscillation of the 
total tunnelling current ( )J F : 

0( ) ( )J F B J F= ,           (1) 

where      2
0 ( ) exp( / )J F AF C F= −   and  (2) 

12 2 2( ) ( / ) ' ( )cb cbB Ai aL a k Ai aL
−

⎡ ⎤= − + −⎣ ⎦ .  (3) 
A and C in the FN expression (2) are defined as: 
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where Bφ  is the semiconductor- oxide barrier 

height, sim∗  and oxm∗  are the electron effective 
masses in the silicon substrate and gate oxide, 
respectively. ( )Ai x  and '( )Ai x  in Eq.(3) are the 
Airy function and its derivative, respectively. 
The coefficient a  and the distance cbL , travelled 
by the electron with energy E in the conduction  

band of 2SiO  are given by ( )1/322 /oxa m qF∗= h  

and ( ) /cb ox BL t E qFφ= − − , respectively. 
 Analytical investigations of the 
oscillatory gate current shows that the positions 
of the extrema in the current oscillation depend 
on the internal characteristics of the system. 
These are the gate oxide thickness oxt , the 
barrier height Bφ , the effective mass and the 
Fermi energy of electrons FE  in the system, and 
also on the strength of the applied electric field 
F . This fact allows us to express the oxide 
thickness via the values of the electric field 
strength F at the extrema of the oscillations 

nF F= . The conventional method to determine 
the gate oxide thickness is based on the 
oscillative nature of the quantum prefactor B 
given by Eq.(3), which gets maximal values at 
zero points of the Airy function, 

( ) 0
ncb F FAi aL =− = , and minimal values at zero 

points of the derivative of the Airy function, 
'( ) 0

ncb F FAi aL =− = . 
 We present a new quasi- classical 
method to determine the gate oxide thickness by 
measuring the electric fields corresponding to 
two subsequent extrema of oscillations [4]. 
Careful analyses of experimental data of the gate 
current oscillations, to determine the oxide 
thickness by applying our method as well as the 
conventional method, shows that accuracy of our 
method is higher than that of the conventional 
method. 
 

2. Determination of the oxide 
thickness from the oscillation period 

To determine the oxide thickness oxt  by 
the conventional method [5], the following 
qualitative relation between oxt  and the 
measured values of the electric field nF  at the 
n th maximum (or n th minimum) is used: 
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where nK  is the n th zero of the Airy function 
(of the derivative of the Airy function). 
 We suggest a quasi- classic theory to 
determine the oxide thickness by knowing the 
positions of two subsequent extrema in the 
current oscillations. According to the quantum- 
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Fig.1: (a) Tunneling of a particle with energy 

0 1U E U< <  through a quantum barrier of width b with 
subsequent transmission over a barrier of width a . (b) 

Tilting of the conduction band edge of 2SiO  under the 
gate voltage. The line AL corresponds to the voltage, where 
a crossover from the WKB regime to the FN regime by 
increasing the gate voltage takes place. The lines AM and 
AN characterize the conduction band tilting under the 
voltages 1V  and 2V , corresponding to two subsequent 
extrema in the current oscillations. 
 
mechanic the transmission over a potential well 
or a potential barrier of width a , the 
transmission coefficient 2T  reaches the 
extremal values at the points ( )ka nπ α= −   

1, 2,3,...n = , which correspond to maxima for  

0α =  and minima for 1/ 2α = . Since the depth 
of a potential well 0U−  or the height of a barrier 

0U  is constant, the wavelength 
2

02 ( )k m E U= − h  of the transmitted 
particle with energy E takes also constant values 
at every point of motion over the well or barrier. 
If the spatial distance between two subsequent 
maxima or minima is a∆ , then a k π∆ = . 
 To understand the nature of oscillations 
deeper, we have studied the transmission of a 
particle with energy 0 1U E U< <  through the 
more complicated structure, shown in Fig.1a 
analytically. Minimizing 2T  with respect to a  
gives the following condition for the extremal 
points: 

2 2

2 2 2 2 2 4 2
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κ κ κ
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+=
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            (5) 
where 2 22 /q mE= h , 2 2

12 ( ) /m U Eκ = − h . 

The transmission coefficient 2T  can be seen 
from Eq.(5) to take maximal and minimal values 
at ( ) / 2ka nπ α δα= − +  for 0α =  and 

1/ 2α = , correspondingly. The shift δα  occurs 
due to tunnelling of an electron through the 
potential barrier of width b . δα  vanishes as 

0b →  or 1 0U U→ , and it does not depend 
neither on the distance a  nor on the electric 
field. The distance a∆  obeys again the relation 
of a k π∆ = . 
 The wave number of an electron, which 
propagates in the tilted conduction band of 
silicon oxide, depends on the spatial coordinates, 
instead of k const=  as in the previous examples 
of electron motion over a potential barrier or 
well. Fig.1b shows the conduction band tilting of 
silica for different voltages. Imagine that an 
electron moves the distance ( )ox nt z−  over the 
conduction band of 2SiO  under the applied 
voltage nV , which corresponds to the n th 
maximum or minimum. Dividing the distance of 
( )ox nt z−  to N equal portions with length of iz∆  
around the point iz , an electron wave number 

2( ) 2 ( ( )) /i ox ik z m E U z∗= − h  can be roughly 
considered to be constant moving over a  
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rectangular barrier of width iz∆ . Summing up 
over all portions and taking N → ∞  we get the 
condition to determine the position of n th 
maximum for 0α =  or n th minimum for 

1/ 2α = : 

( )2

2 ( ) ( )
ox

n

t
ox

z

m E U z dz nπ α δα
∗

− = − +∫ h
,    (6) 

where δα  is a phase shift, ( ) BU z qFzφ= − . 
The distance 1z , e.g. for the first maximum or 
minimum can be found in Fig.1b from the 
triangle ACM as 1 1( ) /Bz E qFφ − . Routine 
calculations give the final formula for the  
oxide thickness oxt  by the values of the electric 
fields at two subsequent maxima or minima 1F   
and 2F : 
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 To check the validity of our quasi- 
classical oxide thickness determination method, 
we utilize experimental data for two subsequent 
maxima or minima of the gate voltage 
( max1 max 2,V V  or min1 min 2,V V ) and the 
corresponding electric fields ( max1 max 2,F F  or 

min1 min 2,F F ) from three different measurements 
[2, 6, 7]. In the estimations we used 3.1B eVφ =  
for the oxide barrier height and 

0.275FE E eV= =  for the electron energy that 
has been obtained in [8] from self- consistent 
solutions of the Schrödinger- Poisson system for 
the MOS capacitor. The effective masses of 
electrons in the Si substrate and in the gate oxide 
are taken to be  

00.916sim m∗ =  and 00.51oxm m∗ = , 
respectively, where 0m  is the free electron mass. 
The comparative estimations of the oxide 
thicknesses by applying our method and the 
conventional method are presented in Table I. 
The oxide thickness determined by our method 
differ from experimental results less than 5%. 
Errors in the oxide thicknesses determined by the 
conventional method reach up to 90%. 
 

3. Conclusions  
 The tunnelling current oscillations 
provide a valuable tool to determine the 
thickness and to check the quality of ultrathin 
gate oxides. We suggest a novel quasi- classical  

Table I:Estimations of the oxide thickness from the current 
oscillations data of Refs.[2, 6, 7]. 

maxV ( minV ) 
(in Volt) or 

maxF ( minF ) 
(in MV/cm) 

Exper. 
Values 

oxt , nm 
 

Our 
Method 

oxt , nm 
(Error,%) 

Conven. 
Method 

oxt , nm 
(Error,%) 

Ref.[2] 
min1V =5.15 

min 2V =6.12 

max1V =5.58 

max 2V =5.58 

 
4.5 
 
 
4.5 

 
4.47 (0.6) 
 
 
4.73 (5.0) 

 
0.4 (91) 
 
 
1.2 (73) 

Ref.[6] 
min1V =5.05 

min 2V =6.00 

max1V =5.50 

max 2V =6.47 

 
4.5 
 
 
4.5 

 
4.52 (0.4) 
 
 
4.60 (2.0) 

 
0.44 (90) 
 
 
1.24 (72) 

Ref.[7] 
min1F =7.9 

min 2F =10.2 

max1F =7.4 

max 2F =8.8 

 
4.2 
 
 
5.2 

 
4.24 (1.0) 
 
 
5.30 (2.o) 

 
2.8 (33) 
 
 
3.7 (28) 

 
method to find the oxide thickness. Our 
expressions (6) and (7) depend, apart from the 
electric field, also on the effective mass of an 
electron in the oxide and on the barrier height, 
which allow us to determine oxm∗  and Bφ  for a 
sample with a given thickness. 
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