Low Temperature Bonding by using Nanoporous Gold

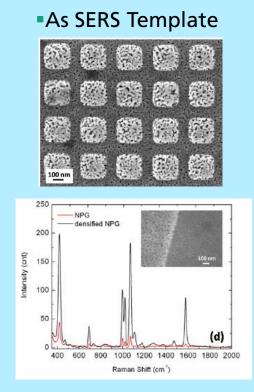
Dr. Wei-Shan Wang Department System Packaging Fraunhofer Institute for Electronic Nano Systems ENAS

International Symposium on Smart Integrated Systems, Chemnitz, 12.08.2014

Outline

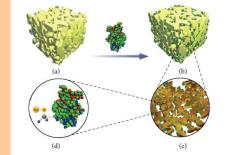
Introduction of nanoporous metals

Low temperature bonding by using nanoporous gold

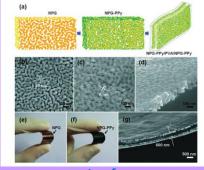

- Substrate bonding at low temperature
- Substrate bonding by using plasma-activated porous gold
- heterogeneous bonding

Summary and outlook

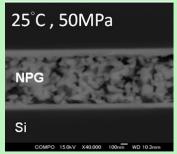
Nanostructured Metals


highly active surface area is sensors, actuators, catalysis, packaging...

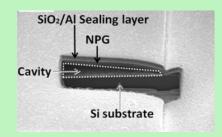
SERS spectra of benzenethiol molecules Nanotechnology 22, 295302, 2011


> SERS: surface-enhancement Raman scattering

Enzyme-Based Biosensors


Adsorption of lacease on nanoporous Au J. Phys. Chem. C **112**, 14781, 2008

Energy systems

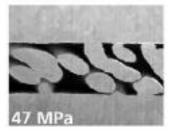


Nanoporous Au for supercapacitors Adv. Mater. 23, 4098, 2011

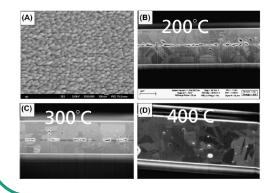
Packaging Applications

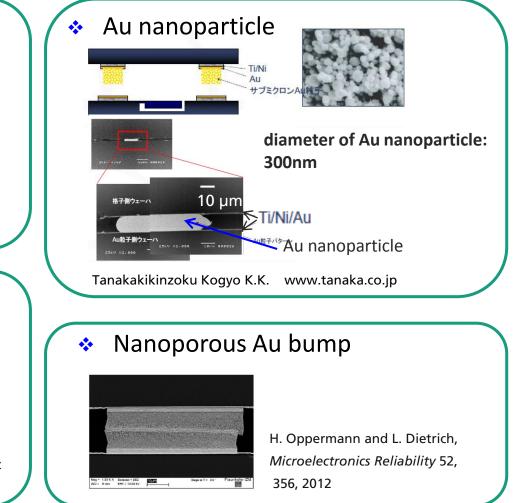
Low temperature bonding 2012 IEEE Sensors, 355, 2012

Thin film encapsulation J. Microelec Sys. **12**, 998, 2013



Bonding by using Nanostructured Metals

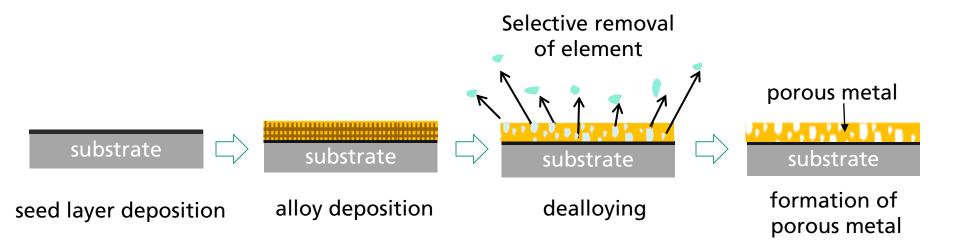

Nano-lawn Au


wire diameter 600nm, length 1-5 microns

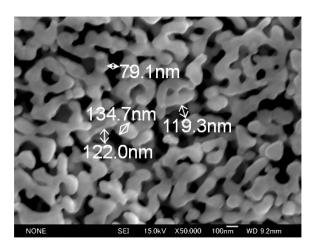
S. Fiedler et al., *IEEE Electron Systeminte.Tech. conference*, *886*, *2006*.

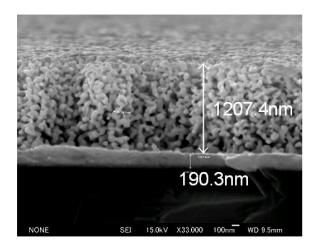
Copper nanorod array

P.I. Wang et.al., Electrochemical and Solid-State Letters, 12 4 H138-H141 2009 . (Rensselaer Polytechnic Institute, USA)



Our Approach-- Fabrication of NPG by Dealloying

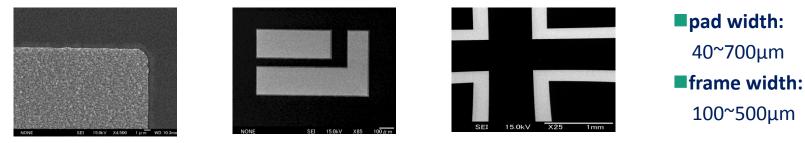

Easy fabricationMEMS compatible processNon-cyanide single bath



Structure of Nanoporous Gold

Top view

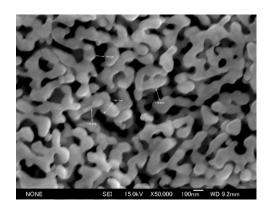
Cross section

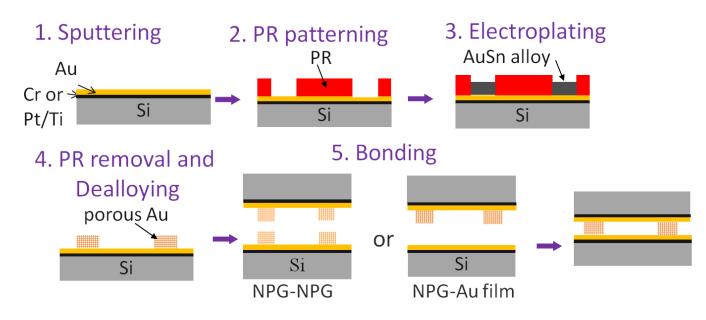

thickness:

from hundreds of nm up to several μm porous size: around 100nm ligament size: up to 100nm

🗾 Fraunhofer

ENAS

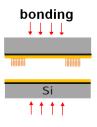

Patterned porous Au

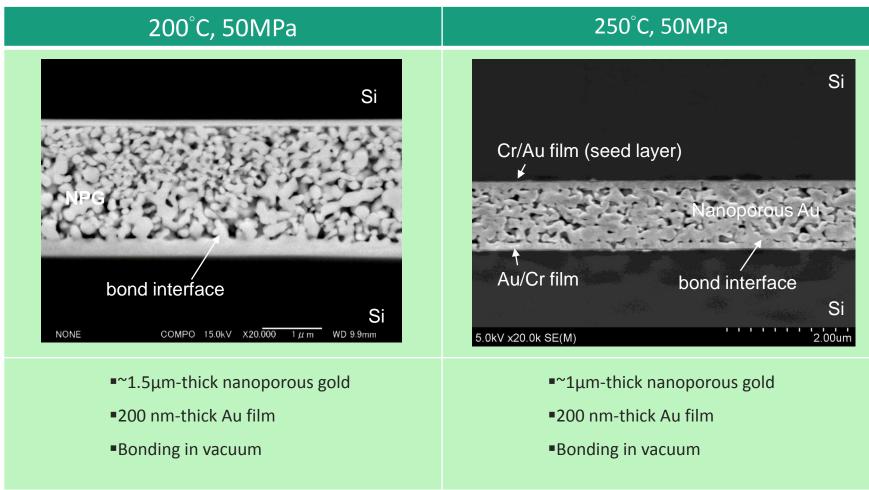


© Fraunhofer ENAS

Concept of using Porous Au for Bonding

High surface to volume ratio
Low temperature bonding (thermalcompression)
Electrical inter-connection achieved during bonding
Sponge-like compressibility, tolerate implanarities

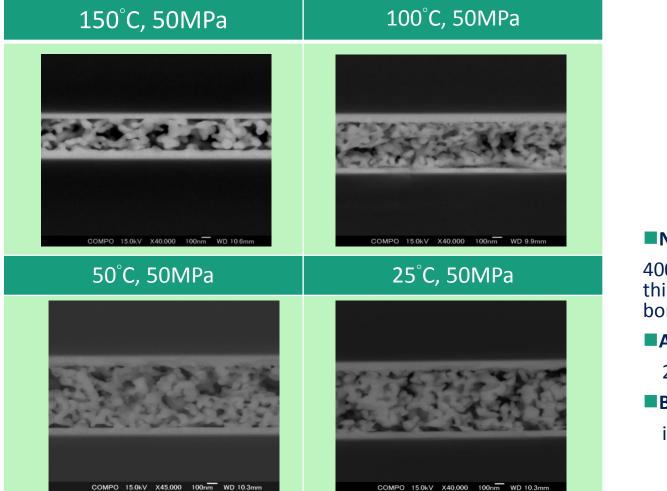


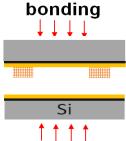


Substrate bonding by using NPG

bonding temperature below 250°C achieved

W.-S. Wang et. al., Substrate Bonding at Low Temperature by using Plasma Activated Porous Gold, 335, IEEE Sensors 2012





Substrate bonding by using plasma-activated NPG

bonded at room temperature with plasma-activated NPG

NPG thickness:

400-800nm, flexible thickness control for bonding

Au thin film:

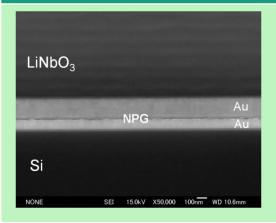
200nm

Bonding condition:

in ambient air



Heterogeneous bonding by using NPG



- NPG fabrication on various substrates possible
 (Si, LiNbO₃, glass,..)
 Various pad sizes
 (width 40µm-700µm)
- Various NPG thickness

$\rm Si\math{-}LiNbO_3$ bonding with NPG layer

- ■700 nm-thick NPG
- 100nm-thick Au film
- •bonding temperature: 200° C
- bonding pressure: 50 MPa
- without plasma treatment

Si-LiNbO₃ bonding with ultra-thin NPG layer

COMPO 15.0kV X40,000 100nm WD 10.0mm

several tens of nanometer-NPG
100nm-thick Au film
bonding temperature: 190° C
bonding pressure: 50 MPa
without plasma treatment

Si

NONE

LiNbO₃

Cooperation - special strengths

JAPAN (Sendai)

- Provide key components to systems
- •Pioneer leading-edge research
- Open research environment with plenty of home made equipments
- Process by researchers: flexible & novel

GERMANY (Chemnitz)

Wafer level

- Smart system integration and reliability
- In preparation for industrially mass production and back end of line
- Latest commercialized equipments including class 10 cleanroom
- Process by technician: professional & stable

Summary and Outlook

Characteristics of Nanoporous Gold

- MEMS-compatible fabrication process
- High surface area:
 - decrease bonding temperature down to 200°C or even at room temperature
 - potential candidate for heterogeneous bonding
- Sponge-like compressibility:
 - bonding without critical requirements of surface cleanliness and roughness
- Flexible control of thickness:
 - bonding achieved regardless of thickness of NPG

More Possibilities of Nanoporous Metals

- Advanced materials for packaging
- As catalysts for electrochemical applications
- Biosensors, chemical and physical sensors
- Energy storage/conversion systems

Thank you for your attention

Dr. Wei-Shan Wang

Fraunhofer ENAS Department System Packaging

Mail: weishan.wang@enas.fraunhofer.de

Phone: 0371-45001-495

Technologie-Campus-3 09126 Chemnitz Germany

