KOH-Etching of the Curved Electrode of an In-plane Moving Edge Actuator

J. Frühauf, F. Bennini, E. Gärtner

Fig. 1: Concept of the moving edge actuator

Fig. 1 shows the concept of the electrostatic moving edge actuator. The in-plane curved electrode is made by anisotropic KOH etch technique. This etchant generates vertical sidewalls along the <100>-mask edges so that a thin beam (width: wafer thickness) for the in-plane bending can be produced. In addition nearly vertical sidewalls are also generated along mask edges deviating about ± 4° from the <100>-orientation. An indication that vertical sidewalls occur is the equality of etch rates for their upper and lower edges (fig. 2). Therefore a vertical structure can be etched having a curved contour.

The mask of the curved electrode is realized by using a modified triangular structure. The hypotenuse is replaced by segments of a polygon. The design problem consists in finding the mask polygon from which the resulting course of vertical sidewalls fits equation (1).

\[y = d_{\text{max}} \left(\frac{x}{L} \right)^n \]
\(d_{\text{max}} \): maximum possible deflection,
\(L \): length of curved electrode

(1)

At first the curve of equation (1) is approximated by a polygon with an angle increment of \(\Delta \alpha = 0.1^\circ \). The mask is constructed by the displacement of the segments of the polygon by the distances of underetching corresponding to their direction = 45°-\(\Delta \alpha \) and to the etching time. The underetch rates of KOH 30% 80°C are known for all directions of mask edges in steps of \(\Delta \alpha = 3^\circ \) (file of etchant of simulator SIMODE). By a parabolic interpolation between 41° and 49° we can use \(v(45 \pm \Delta \alpha) = (0.00555 \Delta \alpha^2 + 1.0775) \mu m/min \) to calculate the rates in steps of \(\Delta \alpha = 0.1^\circ \) (equation (2) fits the rates of fig. 2 in region c).

Fig. 2: Etch rates as functions of the angle \(\alpha \) between the direction of the mask edge and the flat of a \{100\}-wafer.

a: sidewalls with inclination of about 55°;
b: sidewalls consisting of two facettes;
c: nearly vertical sidewalls

An example of the measured contours of the realized curved counter electrode is shown in fig. 3. The best fits were found with the exponents \(n = 2.25 \) and \(n = 3.48 \) which exceed a little the target values of \(n = 2 \) and \(n = 3 \), respectively. This indicates the realizibility of sidewalls with a defined curved course. The deviations arise from the inaccuracy of the etch rates.

Fig. 3: Measured contours of curved electrodes

An example of the measured contours of the realized curved counter electrode is shown in fig. 3. The best fits were found with the exponents \(n = 2.25 \) and \(n = 3.48 \) which exceed a little the target values of \(n = 2 \) and \(n = 3 \), respectively. This indicates the realizibility of sidewalls with a defined curved course. The deviations arise from the inaccuracy of the etch rates.